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Abstract. An effective non-local quantum field theory is constructed, which describes the interaction of
pomerons in high-colored QCD. The theory includes both splitting and merging triple pomeron vertexes
and diagrams with pomeronic loops. The Schwinger–Dyson equations for the ‘physical’ pomeron are written.
Conformal invariance allows one to reduce the theory to the old-fashioned Gribov pomeron theory with an
infinite number of pomerons, one of which is supercritical.

1 Introduction

The high-energy behavior in QCD with a large number of
colors Nc is described by the exchange of hard pomerons,
which split and merge by a triple pomeron vertex. Ex-
change of colored objects (single gluons) is damped by a
factor 1/N2c . In the interaction with heavy nuclei, the lead-
ing contribution comes from diagrams without pomeronic
loops (tree diagrams). Summation of these is achieved
by a closed equation for DIS (the BK equation [1–4])
or a closed pair of equations for nucleus–nucleus scatter-
ing [5–7]. Some estimates of the contribution from loops
were made in [8, 9]. To take into account the contribu-
tion from pomeronic loops in a consistent manner one has
to consider the effective pomeron field theory introduced
in [5–7] as a full-fledged quantum theory. The present
study is devoted to this aim.
Note that pomeronic loops have lately also been ac-

tively studied in the framework of the color dipole picture
in the so-called JIMWLK approach (see e.g. [10] and refer-
ences therein). There, the evolution in rapidity of a state,
considered as a functional of the gluon field, is governed
by a certain Hamiltonian made of the field and functional
derivatives in the field. Taking loops into account leads to
a Hamiltonian containing functional derivatives up to the
fourth order [11]. In our approach a quantum Hamiltonian
can also be introduced. However, it contains functional
derivatives only up to the second order and so is consider-
ably simpler than in the JIMWLK approach.
In this study we restricted ourselves to a rather formal

treatment of the perturbative diagrams for the pomeron
interaction with or without loops. We construct the rel-
evant Schwinger–Dyson equations for the full pomeron
Green function and also discuss their conformal (Möbius)
invariance, which hopefully may simplify their analysis.
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In fact we are not very optimistic about a realistic calcu-
lation of the amplitudes with pomeronic loops included.
This problem presented enormous difficulties already for
the much simpler old-fashioned Gribov local supercritical
pomeron model, so that even its internal inconsistency was
claimed [12] (see also [13] for a discussion of this incon-
sistency). Possibly the more complicated structure of the
BFKL pomeron and its interaction may overcome these old
troubles. However, in the present study this problem is not
touched but left for future investigations.

2 Effective action and diagrams

2.1 Effective action

Our main tool will be the non-forward BFKL Green func-
tion as a function of gluon coordinates and rapidities,
which satisfies the equation(

∂

∂y
+H

)
g (y−y′; r1, r2; r

′
1, r
′
2)

= δ(y−y′)∇−21 ∇
−2
2 δ

2(r11′)δ
2(r22′) , (1)

where r11′ = r1− r
′
1 etc. and H is the BFKL Hamilto-

nian [14, 15]:

H =
ᾱ

2

(
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2
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1
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ln r212p
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1

p22
ln r212p

2
2−4ψ(1)

)
,

(2)

p1 and p2 are the reggeized gluons transverse momenta,
and ᾱ= αsNc/π. To economize on notation, in the follow-
ing we shall denote as z the point in the space formed by
rapidity y and two transverse vectors r1, r2:

z = {y, r1, r2}= {y, �} .
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In this notation we write g(y−y′; r1, r2; r′1, r
′
2) = g(z, z

′).
The Green function g(z, z′) is invariant under conformal
(Möbius) transformations of coordinates r1 and r2. In com-
plex notation, r = x= iy, these transformations are

r′ =
αr+β

γr+ δ
, r′∗ =

αr∗+β

γr∗+ δ
,

with αδ−βγ = 1. The inverse function g−1(z, z′) defined
by ∫

dz′′g−1(z, z′′)g(z′′, z′) = δ(z− z′) , (3)

where dz = dyd2r1d
2r2 ≡ dyd�, and δ(z) = δ(y)×

δ2(r1)δ
2(r2) ≡ δ(y)δ�, is however not conformally invari-

ant, since the measure is not conformally invariant. It is not
difficult to construct a conformally invariant inverse g−1inv
using the invariant measure:

dτ =
d2r1d

2r2

r412
. (4)

Then we can rewrite (3) as∫
dy′′dτ ′′r412g

−1(z, z′′)r′′12
4
g(z′′, z′) = r412δ(z− z

′) . (5)

This shows that the conformally invariant function is

g−1inv(z, z
′) = r412g

−1(z, z′)r′12
4
. (6)

Now we pass to constructing the effective non-local
quantum field theory, which is to describe propagation of
free pomerons and their triple interaction. It has to gener-
ate all diagrams built from the pomeron propagator, which
is the Green function g, and the triple pomeron vertex in-
troduced in [16–19]. Let ϕB(z) and ϕA(z) be two bilocal
fields for the incoming and outgoing pomerons. To repro-
duce the correct propagator the free action S0 has to be

S0 =

∫
dzdz′ϕA(z)g

−1(z, z′)ϕB(z) . (7)

We introduce interaction with external sources as

SE =−

∫
dzϕA(z)JB(z)+ (A↔B) . (8)

Here the sources for the projectile A and target B are dif-
ferent from zero at rapidities y= Y and y = 0, respectively:

JA(z) = J̄A(�)δ(y−Y ) , JB(z) = J̄B(�)δ(y) . (9)

Finally the interaction to reproduce the 3P vertex at large
Nc has to be taken in the form

SI =
2α2sNc
π

∫
dy
d2r1d

2r2d
2r3

r212r
2
23r
2
31

ϕB(z1)ϕB(z2)L12ϕA(z3)

+ (A↔B) , (10)

where z1 = {y, r2, r3}, z2 = {y, r3, r1}, z3 = {y, r1, r2} and
the conformally invariant operator L12 is

L12 = r
4
12∇

2
1∇
2
2 . (11)

Note that the form (10) assumes the fields to be symmet-
ric in the two space points r1 and r2. In fact the symmetry
properties of the fields are determined by symmetry prop-
erties of the external sources. We assume them to be sym-
metric under the interchange r1↔ r2.
This action leads to BFKL pomeron diagrams with the

standard 3P interaction in the presence of an external field.
Note that the signs of different building blocks of the dia-
grams are somewhat different from the standard ones: the
propagator g and external sources enter with a minus sign
as a consequence of the choice of signs in the action. This
latter corresponds to the desire to make the interaction real
and not pure imaginary as in the original Gribov reggeon
field theory.
In the absence of the external sources this action is

explicitly conformally invariant provided ϕB and ϕA are
invariant. Indeed the free part can be rewritten as

S0 =

∫
dydy′dτ dτ ′ϕA(z)r

4
12g
−1(z, z′)r′12

4
ϕB(z) (12)

and the interaction part as

SI =
2α2sNc
π

∫
dydy′dy′′dτ dτ ′dτ ′′ϕB(z

′)ϕB(z
′′)

×γ(z′, z′′|z)L12ϕA(z)+ (A↔B) , (13)

where γ(z′, z′′|z) is the bare interaction vertex for the in-
coming pomeron at z and two outgoing pomerons at z′

and z′′:

γ(z′, z′′|z) = δ(y−y′)δ(y−y′′)δ2(r12′)δ
2(r1′2′′)δ

2(r1′′2)

× r212r
2
1′2′r

2
1′′2′′ . (14)

This is a conformally invariant function. Since both
r412g

−1(z, z′)r′12
4
and γ(z′, z′′|z) are conformally invariant,

so is the action S0+SI. Of course, in physically relevant
cases conformal invariance is always broken by the external
sources, which also introduce a mass scale into the theory.
As a result the contribution from any Feynman diagram
without external sources is conformally invariant, which
becomes explicit if one uses the invariant integration meas-
ure dzinv = dydτ and the invariant interaction vertex γ
given by (14).
Finally, note that from (1) it follows that as an operator

in the z-space

g−1(z, z′) =∇2�

(
∂

∂y
+H

)
δ(z− z′) . (15)

Here we use the notation

∇2� =∇
2
1∇
2
2 . (16)

Note that the operator∇2�H is symmetric:

∇2�H =
ᾱ

2
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2
2

)
+p22 ln r

2
12p
2
1+p

2
1 ln r

2
12p
2
2
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2
2

)
. (17)
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As a result S0 can be written directly in terms of the BFKL
Hamiltonian:

S0 =

∫
dyd�ϕA(y, �)∇

2
�

(
∂

∂y
+H

)
ϕB(y, �)

=

∫
dyd�ϕB(y, �)∇

2
�

(
−
∂

∂y
+H

)
ϕA(y, �) .

(18)

In this form the symmetry between the projectile and tar-
get is made explicit: it has to be accompanied by changing
y→−y.
Using forH the representation [20]

Hf(r1, r2)

=
ᾱ

2π

∫
d2r3r

2
12

r213r
2
23

(f(r1, r2)−f(r1, r3)−f(r2, r3)) ,

(19)

we can rewrite the free part of the action in a more explicit
form:

S0 =

∫
dyd2r1d

2r2ϕA(y, r1, r2)∇
2
�

×

{
∂

∂y
ϕB(y, r1, r2)+

ᾱ

2π

∫
d2r3r

2
12

r213r
2
23

× (ϕB(y, r1, r2)−ϕB(y, r1, r3)−ϕB(y, r2, r3))

}
.

(20)

2.2 Diagrams and their order of magnitude

The quantum field theory described by the action S = S0+
SI+SE allows one to construct the perturbation theory
by the standard technique, expressing the amplitude as
a sum of Feynman diagrams. It is instructive to see orders
of magnitude of different contributions in terms of two in-
dependent small parameters of the theory, ᾱ= αsNc/π and
1/Nc.
First we note that the smallness of these basic param-

eters allows one to neglect other contributions, apart from
those appearing in our effective theory. The smallness of ᾱ
allows one to drop higher order corrections to the BFKL
pomeron itself. The smallness of 1/Nc allows one to neglect
contributions from the exchange of more complicated col-
orless structures than the BFKL pomeron, which appear
if one takes into account the full interaction between the
reggeized gluons and not only its leading part in 1/Nc [16,
17]. It also allows one to neglect higher order transition ver-
texes fromm to n pomerons [19].
In the remaining effective theory each triple interaction

contributes ᾱ2/Nc. The final estimate depends on the mag-
nitude of the external source. If we treat it perturbatively
to be consistent with the whole approach, then it should
correspond to the quark–antiquark loop, fromwhich we ex-
tract its order, which is ᾱ. As a result, the diagram with lE
external lines (sources) and L loops has the order

ᾱlE
(
ᾱ2

Nc

)2L+lE−2
. (21)

As one sees, for a given number of external sources, the
dominant contribution comes from the tree diagrams, each
loop introducing a small factor ᾱ4/N2c . This implies of
course that at ᾱ ln s∼ 1 the loops are suppressed and need
not be taken into account.
However, this pure counting does not take into account

the growth of the pomeron propagator at large y as exp∆y
where ∆ is the BFKL intercept, nor the enhancement re-
lated to the nuclear sources with large atomic numbers. For
the AA collision amplitude with the overall rapidity differ-
ence Y this changes (21) to

(ᾱA1/3)lE
(
ᾱ2

Nc

)2L+lE−2
en∆Y , (22)

where n is the maximal number of the exchanged pomerons
at a given rapidity. This number depends on the topology
of the diagram and generally grows with lE and L.
So, for

ᾱA1/3 ∼ 1 (23)

one has to sum all tree diagrams, and for rapidities Y such
that

ᾱ2

Nc
e∆Y ∼ 1 , (24)

one has to sum also at least some of the loops. For onium–
onium scattering (lE = 2) a convenient method to sum the
leading contribution is to join two sums of tree diagrams
starting from the projectile and target at mid-rapidity [8].
However, all these perturbative estimates are to be

taken with caution. The full pomeron Green function may
have an asymptotic behavior at large y very different from
the bare one. In fact there is every reason to believe that
the former will grow at most as a power of y, not as an
exponential. Then all the above estimates will have to be
reconsidered. Indications for this come from the study of
a similar (but much simpler) old Regge–Gribov model for
the supercritical pomeron. It was concluded that in all
probability the model was inconsistent unless the physi-
cal pomeron became critical (∆ = 0) or even subcritical
(∆< 0) (see e.g. [12]). Unfortunately these results have not
been obtained in a reliable manner up to now.

3 The pomeron Hamiltonian and operators

With the action fixed, one can easily construct a Hamil-
tonian formulation for the state evolution. Since the La-
grangian is of the first order in derivatives in rapidity, the
Hamiltonian is just the action without the derivative terms
with a minus sign and integration over y dropped:

H =−

∫
d�ϕA(�)∇

2
�HϕB(�)−

2α2sNc
π

∫
d2r1d

2r2d
2r3

r212r
2
23r
2
31

×{ϕB(�23)ϕB(�31)L12ϕA(�12)+ (A↔B)} , (25)
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where �23 = {r2, r3} etc. To pass to the quantum theory
one has to consider ϕA,B(�) as operators. Their commuta-
tion relation can be easily established from the form of the
free Green function,

g(y−y′; �, �′) =−〈T {ϕB(y, �)ϕA(y
′, �′)}〉 . (26)

From (26) we conclude
(
∂

∂y
+H

)
〈T {ϕB(y, �)ϕA(y

′, �′)}〉

= δ(y−y′) [ϕB(y, �), ϕA(y, �
′)] , (27)

where we have used the equation of motion for ϕB. Com-
parison with (1) gives

[ϕB(y, �), ϕA(y, �
′)] =−∇−2� δ(�−�

′) . (28)

Thus in a representation in which ϕB(�) is diagonal and
the state vector is a functional Ψ{ϕB(�)}, the field ϕA is
essentially a functional derivative:

ϕA(�) =∇
−2
�

δ

δϕB(�)
. (29)

The state with a given field ϕA(�) will be represented by
a an exponential,

ΨϕA(�)({ϕB}) = e
∫
d�ϕB(�)∇

2
�ϕA(�). (30)

The state vector will satisfy the evolution equation

dΨ

dy
=HΨ , (31)

where in HB, given by (25), one has to substitute the field
ϕA by functional derivatives. In this substitution, as al-
ways, the order of the operators is actually undetermined.
If we put all the derivatives to the right (‘normal order-
ing’), then explicitly

H=−
ᾱ

2π

∫
d2r1d

2r2d
2r3r

2
12

r213r
2
23

×

{
[ϕB(�12)−ϕB(�13)−ϕB(�23)]

δ

δϕB(�12)

−4παs

[
ϕB(�13)ϕB(�23)

δ

δϕB(�12)

+L12ϕB(�12)

(
∇−2�

δ

δϕB(�13)

)(
∇−2�

δ

δϕB(�23)

)]}
.

(32)

One can pass from this squttarget representation in
which the field ϕB is diagonal to the squtprojectile repre-
sentation in which it is ϕA, which is diagonal, and ϕB is
represented by a functional derivative:

ϕB(�) =−∇
−2
�

δ

δϕA(�)
. (33)

In this representation the Hamiltonian will be obtained
from (32) by interchanging A and B and changing signs of

derivatives. The state vector will be obtained by a quasi-
Fourier transformation using (30).
One can construct a formulation in which the symmetry

between target and projectile is more explicit. To do this
one can pass to slightly different field variables for which
the BFKL Hamiltonian becomes symmetric. The form of
these new variables is clearly seen from the commutation
relation (28)

ϕ(y, �) =
√
∇2�ϕA(y, �)≡ TϕA(y, �) ,

ϕ†(y, �) =
√
∇2�ϕB(y, �)≡ TϕB(y, �) (34)

(the operator
√
∇2� has a simple form in the momentum

space). For them the equal rapidity commutation relation
takes the form

ϕ(y, �), ϕ†(y, �′) = δ(�−�′) . (35)

One can also assume that the scalar product of state vec-
tors is chosen to make ϕ and ϕ† Hermitian conjugate to
each other. In the representation in which, say, ϕ† is diag-
onal with complex eigenvalues α, we take (up to a normal-
ization factor)

〈Ψ1|Ψ2〉=

∫
DαDα∗Ψ1(α

∗)Ψ2(α)e
−
∫
d�α∗(�)α(�). (36)

Then indeed

〈Ψ1|ϕ
†(�)|Ψ2〉

=

∫
DαDα∗Ψ1(α

∗)Ψ2(α)α(�)e
−
∫
d�′α∗(�′)α(�′)

=

∫
DαDα∗ Ψ1(α

∗)Ψ2(α)

(
−

δ

δα∗(�)

)
e−
∫
d�′α∗(�′)α(�′)

=

∫
DαDα∗Ψ2(α)e

−
∫
d�′α∗(�′)α(�′) δ

δα∗(�)
Ψ1(α

∗)

= 〈ϕ(�)Ψ1|Ψ2〉 .

Thus the two quantized fields ϕ(y, �) and ϕ†(y, �) ac-
quire the standard meaning of annihilation and creation
operators for a pomeron at rapidity y and space points
�= {r1, r2}.
In terms of these new field variables the free action

takes the form

S0 =

∫
dyd�ϕ(�)T

(
∂

∂y
+H

)
T−1ϕ†(�)

≡

∫
dyd�ϕ(�)

(
∂

∂y
+ H̄

)
ϕ†(�) , (37)

where the new Hamiltonian for the pomeron is

H̄ = THT−1

=
ᾱ

2

(
ln p21+ln p

2
2+

√
p22
p21
ln r212

√
p21
p22

+

√
p21
p22
ln r212

√
p22
p21
−4ψ(1)

)
. (38)



M.A. Braun: Conformally invariant pomeron interaction in perturbative QCD with large Nc 515

It has obviously the same eigenvalues but is Hermitian
(and real). Using its hermiticity we can revert the order of
operators in (37) and write S0 in the ‘normal order’ form

S0 =

∫
dyd�ϕ†(�)

(
−
∂

∂y
+ H̄

)
ϕ(�) . (39)

This form explicitly shows the symmetry between tar-
get and projectile, which is quite similar to the usual time
reversal: one has to change ϕ↔ ϕ†, y→−y and revert the
order of all operators.
In terms of new field operators the external part of the

action acquires the form

SE =−

∫
dz
(
ϕ(z)T−1JB(z)+ϕ

†JA(z)
)

≡−

∫
dz
(
ϕ(z)J†(z)+h.c.

)
, (40)

where

J(z) = T−1JA(z) , J
†(z) = T−1JB(z) . (41)

The interaction part becomes rather complicated, involv-
ing several operators T or their inverses:

SI =
2α2sNc
π

∫
dy
d2r1d

2r2d
2r3

r212r
2
23r
2
31

×
(
T−1ϕ†(y, �23)T

−1ϕ†(y, �13)r
4
12Tϕ(y, �12)+h.c.

)
.

(42)

With the physical meaning of the operators ϕ and
ϕ† well established and indeed standard, the analysis of
the evolution becomes trivial. Let us follow it for free
pomerons. Then their number is conserved and actu-
ally the only connected diagram corresponds to a single
pomeron. Such a state is to be constructed as a superposi-
tion of single pomerons at different positions �:

Ψ(y) =

∫
d�f(y, �)ϕ†(�)Ψ0 , (43)

where Ψ0 is the vacuum state which obeys

ϕ(�)Ψ0 = 0 (44)

and is normalized to unity (we assume the Schrödinger-like
picture with operators ψ and ψ† at fixed rapidity). At the
initial rapidity y = 0 the pomeron wave function is deter-
mined by the external current:

Ψ(0) =

∫
d�J̄†(�)ϕ†(�)Ψ0 , (45)

where we recall that J̄ is the spatial part of J . This state
evolves to the final rapidity Y at which we are interested
in the amplitude Afi to pass to a specific final state deter-
mined by the current at y = Y :

Ψf =

∫
d�J̄(�)ϕ†(�)Ψ0 . (46)

One has

Afi = 〈Ψf |Ψ(Y )〉

=

∫
d�d�′J̄(�)f(y, �′)

〈
Ψ0|ϕ(�)ϕ

†(�′)|Ψ0
〉

=

∫
d�J̄(�)f(y, �) , (47)

where we used (35) and (44).
The law which governs the evolution of the wave func-

tion f(y, �) follows from the general Schrödinger equa-
tion (31) and the form of the HamiltonianH. The free part
of the latter in terms of new operators has the standard
form

H0 =−

∫
d�ϕ†(z̄)H̄ϕ(z̄) , (48)

so that from (43) one immediately finds the equation

∂f(y, �)

∂y
=−H̄f(y, �) , (49)

with a formal solution

f(z) = e−H̄yf(0) =

∫
d�′ḡ(y, �; 0, �′)f(0) . (50)

Here ḡ is the Green function for the operator ∂/∂y+ H̄
which can be written as an operator in the coordinate space

ḡ(y) = θ(y)e−H̄y. (51)

Using this we obtain for the amplitude

Afi =

∫
d�d�′J̄(�)ḡ(y, �; 0, �′)J̄†(�′) . (52)

Returning to the initial external sources and the Green
function we reproduce the standard result

Afi =

∫
d�d�′J̄A(�)g(y, �; 0, �

′)J̄B(�
′) . (53)

Indeed we have

ḡ =

(
∂

∂y
+ H̄

)−1
= T

(
∂

∂y
+H

)−1
T−1 = TgT . (54)

Putting this into (53) gives (52).

4 The Schwinger–Dyson equations
for the pomeron Green function

4.1 The pomeron self-mass

The pomeron self-mass operator starts and finishes with
the three-pomeron vertex, which contains the operator L
acting on the incoming and outgoing pomeron propagator.
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As a result, the Dyson equation for the full pomeron Green
function G(z, z′) takes the form

G(z, z′) = g(z|z′)−

∫
dz̃invdz̃

′
inv

[
r̃412∇̃

2
1∇̃
2
2g(z, z̃)

]

×Σ(z̃, z̃′)
[
r̃′
4

12∇̃
′2
1∇̃′22G(z̃

′, z′)
]
, (55)

where we have explicitly shown how both operators L act
on pomeron propagators (the minus sign in front of the
second term is due to the propagator being in fact equal
to −g). Applying to this equation the operators L from the
left and from the right, we find

G̃(z, z′) = g̃(z, z′)−

∫
dz̃invdz̃

′
invg̃(z, z̃)Σ(z̃, z̃

′)G̃(z̃′, z′) ,

(56)

where we define

G̃= LGL , g̃ = LgL . (57)

Equation (57) can be rewritten in an obvious operator form
as

G̃= g̃− g̃ΣG̃ , (58)

which is the standard form for the Dyson equation, except
for the sign.
Note that the self-mass Σ entering this equation is

a conformally invariant function, due to conformal in-
variance of both the pomeron propagator and the three-
pomeron vertex. As a result, the full Green function is also
conformally invariant.
To pass to pomeron squtenergies ω we have to under-

stand how they are related in the three-pomeron vertex.
We in a standard way present

G(y) =

∫ a+i∞
a−i∞

dω

2πi
eωyG(ω) , (59)

with the inverse transform

G(ω) =

∫ +∞
−∞

dye−ωyG(y) . (60)

In the lowest non-trivial order the contribution to G is just
a simple loop of two pomerons inserted into the pomeron
propagator. Let the rapidity intervals for G, the loop, and
propagators above and below the loop be Y , y′′, y and y′,
respectively. Then, suppressing the integration over coor-
dinates and coupling at the vertexes, we have

G(Y ) =

∫
dydy′dy′′δ(y+y′+y′′−Y )

× g(y)g1(y
′′)g2(y

′′)g(y′) , (61)

where g1 and g2 are the propagators of the two intermedi-
ate pomerons in the loop. For G(ω) we find

G(ω) =

∫
dydy′dy′′e−ω(y+y

′+y′′)g(y)g1(y
′′)g2(y

′′)g(y′)

= g(ω)

∫
dye−ωyg1(y)g2(y)g(ω) . (62)

The integral over y can be written in the form

∫
dye−ωy

∫ a1+i∞
a1−i∞

dω1
2πi

∫ a2+i∞
a2−i∞

dω2
2πi
ey(ω1+ω2)g1(ω1)g2(ω2) .

(63)

We can always choose ω on the line

Re(ω−ω1−ω2) = 0 .

Then integration over y will give

2πδ(Im(ω−ω1−ω2)) .

Subsequent integration over, say, ω2 will finally give

∫
dye−ωyg1(y)g2(y) =

∫ a1+i∞
a1−i∞

dω1
2πi
g1(ω1)g2(ω−ω2) ,

(64)

which result should be analytically continued to arbi-
trary ω. This means that in terms of energies the three-
pomeron vertex formally contains

2πiδ(ω−ω1−ω2) . (65)

That is, energies are conserved at the vertex.
Using this result, again in the lowest order, we find, ex-

plicitly showing the coordinates, (1, 2)≡ {r1, r2},

Σ(0)ω (1, 2|1
′, 2′) =

8α4sN
2
c

π2

∫
dω1
2πi

∫
r12d

2r3

r231r
2
21

r′12d
2r′3

r′31
2r′21

2

× gω1(1, 3|1
′, 3′)gω−ω1(2, 3|2

′, 3′) .

(66)

To pass to the full self-mass we have to substitute the
full pomeron Green functions G for the propagators g and
change one of the three-pomeron vertices into the full one
Γ . In this way we obtain

Σω(1, 2|1
′, 2′) =

8α4sN
2
c

π2

∫
dω1
2πi

∫
r12d

2r3

r231r
2
21

× dτ(1′′, 3′′)dτ(2′′, 4′′)

×Gω1(1, 3|1
′′, 3′′)Gω−ω1(2, 3|2

′′, 4′′)

×Γω,ω1(1
′′, 2′′, 3′′, 4′′|1′, 2′) . (67)

In the lowest order the vertex is given by the spatial part
of γ, (14):

Γ (0)(1′′, 2′′, 3′′, 4′′|1′, 2′)

= δ2(1′′−1′)δ2(2′′−2′)δ2(3′′−4′′)r21′2′r
2
1′′3′′r

2
2′′4′′ .
(68)

4.2 The vertex equation

As in any quantum field theory with a triple interaction
the full vertex is determined by an infinite sequence of
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skeleton diagrams, containing the vertex itself and full
Green functions. In the lowest order one has the so-called
‘three-gamma’ equation. Its explicit form is rather com-
plicated due to the large number of variables. From the
corresponding Feynman diagram we find in terms of gluon
coordinates

Γω,ω′(1
′, 2′, 3′, 4′|1, 2) = Γ (0)(1′, 2′, 3′, 4′|1, 2)

−
8α4sN

2
c

π2

∫
dω1
2πi

∫
dτ(1′′, 2′′)dτ(3′′, 4′′)dτ(3′′′, 4′′′)

× dτ(1̃, 2̃)dτ(1̃′, 2̃′)dτ(1′′′, 2′′′)L(1′, 3′)

×Γω′,ω1(1
′, 3′|1′′, 2′′, 3′′, 4′′)Gω1(1

′′, 2′′|1′′′, 2′ prime′)

×Gω′−ω1(3
′′, 4′′|3′′′, 4′′′)Γω−ω1,ω−ω′(2

′, 4′, 3′′′, 4′′′|1̃, 2̃)

×L(1̃, 2̃)Gω−ω1(1̃, 2̃|1̃
′, 2̃′)Γω,ω1(1

′′′, 2′′′, 1̃′, 2̃′|1, 2) .
(69)

In the shorthand notation �= {r1, r2} and correspondingly

Gω(1, 2)≡Gω(�1, �2)≡G(r
(1)
1 , r

(1)
2 r

(2)
1 r

(2)
2 ) ,

the equation for the vertex part can be rewritten in a more
compact form

Γω,ω′(1
′, 2′|1) = Γ (0)(1′, 2′|1)

−
8α4sN

2
c

π2

∫
dω1
2πi

∫
dτ(1′′)dτ(2′′)dτ(3′′)dτ(4′′)

× dτ(5′′)dτ(6′′)L(1′)Γω′,ω1(1
′|1′′, 2′′)Gω1(1

′′|6′′)

×Gω′−ω1(2
′′|3′′)Γω−ω1,ω−ω′(2

′, 3′′|4′′)L(4′′)

×Gω−ω1(4
′′|5′′)Γω,ω1(5

′′, 6′′|1) . (70)

5 Conformal (Möbius) invariance

5.1 Conformal basis

The basic building blocks of the pomeron perturbation the-
ory – the propagator g, the bare three-pomeron vertex γ
and the integration volume dτ – are conformally invari-
ant. As a result also the full Green function G, self-mass Σ
and vertex Γ are conformally invariant functions of their
arguments. It seems profitable to use this property to sim-
plify the Schwinger–Dyson equations. To do this we have
to study a general form for the conformally invariant func-
tions for the transitions pomeron→ pomeron (squttwo-
point functions) and pomeron→ 2 pomerons (squtthree-
point functions). This can be achieved by expanding these
functions in the conformal basis formed by the functions
(in complex notation) [21]

Eµ(�) =Eµ(r1, r2) =

(
r12

r10r20

) 1−n
2 +iν

(
r∗12
r∗10r

∗
20

) 1+n
2 +iν

,

(71)

where µ = {n, ν, r0} = {h, r0} with n integer, ν real, and
the two-dimensional transverse r0 enumerate the basis.

The functions Eµ(�) are the proper functions of the op-
erator L:

LEµ(�) = lµEµ(�) , lµ =
4π8

an+1,νan−1,ν
, (72)

where

an,ν ≡ aµ =
π4

2

1

ν2+n2/4
. (73)

They form a complete system:

r412δ(�−�
′) =
1

2

∑
µ

Eµ(�)E
∗
µ(�

′) , (74)

where we use the notation

∑
µ

=
∞∑

n=−∞

∫
dν
1

an,ν

∫
d2r0 , (75)

and we satisfy the orthogonality relation∫
dτEµ(�)E

∗
µ′(�

′) = an,νδnn′δ(ν−ν
′)δ2(r00′)

+ bnνδn,−n′δ(ν+ν
′)|r00′ |

−2−4iν

(
r00′

r∗00′

)n
.

(76)

The coefficients bnν are given by the formula

bnν = π
3 24iν

−iν+ |n|/2

Γ (−iν+(1+ |n|)/2)Γ (iν+ |n|/2)

Γ (iν+(1+ |n|)/2)Γ (−iν+ |n|/2)
.

(77)

The functions Eµ are not linearly independent. In fact

E−n,−ν,r0(�) =
bnν

anν

∫
d2r′0|r00′ |

−2+4iν

(
r∗00′

r00′

)n
En,ν,r′0

(�) .

(78)

Presenting a function f(�) by

f(�) =

∫
d�′δ(�−�′)f(�′) (79)

and using the completeness of (74) one gets

f(�) =
1

2

∫
dτ ′
∑
µ

Eµ(�)E
∗
µ(�

′)f(�′) =
1

2

∑
µ

Eµ(�)fµ ,

(80)

where

fµ =

∫
dτE∗µ(�)f(�) . (81)

This gives the standard expansion in the whole overcom-
plete basis.
However it seems possible to limit oneself to an inde-

pendent part of this basis. One possibility is to take a re-
stricted basis with ν > 0 (ν < 0). We denote this restriction
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by µ> 0 (µ< 0). In fact we may split the integration over ν
in (80) into two parts:

f(�) =
1

2

∑
µ>0

Eµ(�)fµ+
1

2

∑
µ<0

Eµ(�)fµ , (82)

and, say, in the second term express the eigenfunctions Eµ
with µ< 0 via those with µ > 0 using (78) to obtain for the
second term

1

2

∑
µ<0

fµ
b−n−ν

a−n−ν

∫
d2r′0|r00′ |

−2−4iν

(
r∗00′

r00′

)−n
E−n,−ν,r′0

(�) .

(83)

Changing the summation and integration variables n→
−n and ν→−ν we get for this term

1

2

∑
µ>0

f−n,−ν,r0
bnν

anν

∫
d2r′0|r00′ |

−2+4iν

(
r∗00′

r00′

)n
En,ν,r′0

(�) .

(84)

Interchanging also r0 and r
′
0 integrations we finally find for

it

1

2

∑
µ>0

Eµ(�)f̄µ , (85)

where

f̄µ =
bnν

anν

∫
d2r′0f−n,−ν,r′0

|r0′0|
−2+4iν

(
r∗0′0
r0′0

)n
. (86)

Summing this with the first term in (82) we get the desired
expansion in the states with µ > 0:

f(�) =
1

2

∑
µ>0

Eµ(�)(fµ+ f̄µ)≡
∑
µ>0

Eµ(�)λµ . (87)

Integrating this with E∗µ>0(�) and using (76), we find

λµ =

∫
dτE∗µ(�)f(�) . (88)

Putting this into (87) we find

f(�) =
∑
µ>0

Eµ(�)

∫
dτ ′E∗µ(�

′)f(�′) , (89)

which means that one also has a completeness relation for
half of the basis with ν > 0:

r412δ(�−�
′) =
∑
µ>0

Eµ(�)E
∗
µ(�

′) . (90)

Obviously the same property is valid for the second half of
the basis with ν < 0.

5.2 Two-point functions

We have to deal with a conformally invariant function
A(1|1′), where, as introduced in the previous sections, the

arguments refer to pairs of the pomeron coordinates. Using
half of the conformal basis we present A by

A(1|1′) =
∑
µ,µ′>0

Eµ(1)E
∗
µ′(1

′)Aµµ′

=
∑
µ>0

∑
µ′<0

Eµ(1)Eµ′(1
′)Aµµ′ , (91)

where we use

E∗n,ν,r0(�) =E−n,−ν,r0(�) . (92)

Our aim is to see which properties Aµ,µ′ should have for
the function A(1, 1′) to be conformally invariant. Since
En,ν,r0(r1, r2) = En,ν,r0+a(r1+a, r2+a) the translational
invariance requires Aµµ′ to depend only on the differ-
ence r0− r′0 ≡ r00′ . Under inversion the expression to be
summed over µ > 0 and µ′ < 0 changes as follows:

Aµµ′(r00′)→ r
−1−n+2iν
0 r′0

−1−n′+2iν′
(a.f.)Aµµ′

(
r00′

r0r′0

)
.

(93)

Here and in the following (a.f.) means ‘antiholomorhic fac-
tor’; that is, the complex conjugate of the preceding factor.
Invariance under inversion requires that

Aµµ′

(
r00′

r0r′0

)
= r1+n−2iν0 r′0

1+n′−2iν′
(a.f.)Aµµ′(r00′) .

(94)

However the left-hand side only depends on the product
r0r
′
0, so in the right-hand side we are obliged to have ei-

ther n= n′ and ν = ν′ or Aµµ′(r00′)∝ δ(r00′). Since ν and
ν′ have opposite signs, the first alternative cannot be real-
ized.WithAµµ′(r00′)∝ δ(r00′). We find that n+n

′ = 0 and
ν+ν′ = 0, so that

Aµµ′ = δn,−n′δ(ν+ν
′)δ(r00′)anνAnν ≡ δµ,µ̄′Aµ , (95)

where µ̄ = µ(n→−n, ν→−ν), and we defined Aµ ≡ Anν
with the factor anν separated for convenience. As a result
the double sum in (91) transforms into a single one:

A(1|1′) =
∑
µ>0

Eµ(1)Eµ̄(1
′)Anν =

∑
µ>0

Eµ(1)E
∗
µ(1

′)Anν ,

(96)

where µ̄= µ(n→−n, ν→−ν). A similar form with sum-
mation over µ < 0 can be obtained in the same manner.
Representation (96) or a similar one with a sum over µ < 0
is valid for any conformally invariant two-point function.
Note that taking an average of the sums over µ > 0 and
µ < 0 one obtains a similar representation in terms of the
whole overcomplete basis, which is in a standard way used
for the BFKL Green function g(z, z′).
Now suppose we have conformally invariant functions

B(1|1′) and C(1, 1′) and form a conformally invariant
integral:

A(1|1′) =

∫
dτ ′′B(1|1′′)C(1′′|1′) . (97)
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Each of the three functions A, B and C has the repre-
sentation (96) with conformal coefficients Aµ, Bµ and Cµ.
Doing the integration with the help of the orthonormaliza-
tion properties of the basis functionsEµ with µ> 0, we find

A(1|1′) =
∑
µ>0

Eµ(1)E
∗
µ(1

′)BµCµ =
∑
µ>0

Eµ(1)E
∗
µ(1

′)Aµ ,

(98)

which means that in the conformal representation (96)

Aµ =BµCµ . (99)

Applying this result to the Dyson equation (58) in the
ω representation, we immediately find

G̃ωµ = g̃ωµ− g̃ωµΣωµG̃ωµ . (100)

So, both the energy ω and conformal quantum numbers µ
of the pomeron are conserved in the interaction and its full
Green function in the conformal basis is trivially expressed
via its self-mass:

G̃ωµ =
1

1/g̃ωµ+Σωµ
or Gωµ =

1

1/gωµ+ l2µΣωµ
. (101)

In (101) the free pomeron Green function g in the confor-
mal basis is given by

gωµ =
2

lnν

1

ω−ωnν
. (102)

5.3 Three-point functions

For a three-point function the expansion similar to (96)
reads

Γ (1|2, 3) =
∑

µ1,µ2µ3>0

Eµ1(1)E
∗
µ2
(2)E∗µ3(3)Γµ1|µ2µ3 ,

(103)

where the intermediate c.m. coordinates are R1, R2 and
R3. Conformal invariance allows one to determine the de-
pendence on them of Γµ1|µ2µ3 . Translational invariance
requires Γµ1|µ2µ3 to depend only on the differences Rik
and from the scale invariance such a dependence should be
a power one. So, we seek

Γµ1|µ2µ3 =R
α12
12 R

α23
23 R

α31
31 (a.f.)Γn1ν1|n2ν2n3ν3 , . (104)

After inversion we find an extra factor in the sum (102):

R−2−α12−α31+1−n1+2iν11 (a.f.)e−in1π (105)

times two similar factors which are obtained from (104) by
cyclic permutations of 123 and conjugation. Invariance re-
quires that each power is zero and that the sum n1+n2+

n3 be even. We get six equations to determine the α. Their
solution gives

α12 =−
1

2
+
1

2
(n2−n1−n3)+ i(ν1−ν2+ν3) ,

α23 =−
1

2
+
1

2
(n1+n2+n3)− i(ν1+ν2+ν3) ,

α31 =−
1

2
+
1

2
(n3−n1−n2)+ i(ν1+ν2−ν3) (106)

and similar expressions for the powers in the antiholo-
morhic factor of the α̃ with ni→−ni.
For the free vertex Γ (0) given by (68), we have

Γ
(0)
µ1|µ2µ3

= Vµ̄1µ2µ3 , (107)

where again µ̄ = µ(n→ −n, ν → −ν) and the vertex
Vµ1µ2µ3 has been introduced by Korchemsky [22]:

Vµ1µ2µ3 =

∫
d2r1d

2r2d
2r3

r212r
2
23r
2
31

×Eµ1(r1, r2)Eµ2(r2, r3)Eµ3(r3, r1)

=Ω(h1, h2, h3)
∏
i<j

r
−∆ij
0i0j

r∗0i0j
−∆̄ij , (108)

with∆12 = h1+h2−h3 etc.

6 Σ and Γ in the conformal basis

To illustrate the simplifications introduced by the transi-
tion to the conformal basis in this section we study the
pomeron self-mass and triple interaction vertex in this ba-
sis.
In a shorthand notation for the gluon coordinates

1 = (r1, r̄1) the pomeron self-mass is given by

Σω(1|1
′) =

8α4sN
2
c

π2

∫
dω1
2πi

∫
dτ(2)dτ(3)dτ(2′)dτ(3′)

×Γ (0)(1|2, 3)Gω1(2|2
′)Gω−ω1(3|3

′)Γω,ω1(2
′, 3′|1′) .

(109)

The actual number of integrations is in fact smaller
due to the δ-functions in the conformal vertex Γ (0) de-
fined by (68). We expand both the Green function and
the vertexes in the conformal basis with µ > 0 (see (96)
and (103)). In the following, we also suppress the ω-
dependence to economize on subindexes. We have

G(2|2′) =
∑
µ>0

GµEµ(2)E
∗
µ(2

′) , (110)

G(3|3′) =
∑
µ′>0

Gµ′Eµ′(3)E
∗
µ′(3

′) , (111)

Γ (0)(1|2, 3) =
∑

µ1,µ2,µ3>0

Γ
(0)
µ1|µ2,µ3

Eµ1(1)E
∗
µ2
(2)E∗µ3(3) ,

(112)

Γ (2′, 3′|1′) =
∑

µ′1,µ
′
2,µ
′
3>0

Γµ′2,µ
′
3|µ
′
1
E∗µ′1
(1′)Eµ′2

(2′)Eµ′3
(3′) .

(113)
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Integrations over the gluon coordinates are done with the
help of (76) and give the product of δ-functions

aµaµ′δµµ2δµµ′
2′
δµ′µ3δµ′µ3′ .

So, we find

Σ(1, 2|1′, 2′) =
8α4sN

2
c

π2

∫
dω1
2πi

×
∑

µ1,µ
′
1,µ,µ

′

Γ
(0)
µ1|µ,µ′

GµGµ′Γµ,µ′|µ′1
Eµ1(1)E

∗
µ′1
(1′)

=
∑
µ1,µ

′
1

Σµ1µ′1
Eµ1(1)E

∗
µ′1
(1′) , (114)

where

Σµ1µ′1
=
8α4sN

2
c

π2

∫
dω1
2πi

∑
µ,µ′

Γ
(0)
µ1|µ,µ′

GµGµ′Γµ,µ′|µ′1
,

(115)

and the suppressed dependence on ω is obvious from its
conservation at the vertexes. Thus we have found for
Σ(1, 2|1′, 2′) an expansion in the conformal basis (91).
From its conformal invariance it follows that

Σµ1µ′1
= δµ1µ′1

Σµ1 , (116)

whereΣµ is the desired pomeron self-mass in the conformal
representation. It can be found from (115) after summation
over µ′1. This gives

Σµ =
8α4sN

2
c

π2

∫
dω1
2πi

∑
µ1,µ2,µ3

Γ
(0)
µ|µ1,µ2

Gµ1Gµ2Γµ1,µ2|µ3 .

(117)

The sum over µi, i = 1, 2, 3 includes integrations over
the three c.m. coordinates Ri on which only the vertexes
depend. We get an integral depending on the four confor-
mal weights:

Ih|h1,h2|h3 =

∫
d2R1d

2R2d
2R3R

α01
01 R

α02
02

×Rα1212 R
α31
31 R

α32
32 R

α21
12 (a.f.) . (118)

Here R0 is arbitrary since the integral is independent of it.
The powers are given by

α01 =−
1

2
+
1

2
(n1−n2−n)+ i(ν2−ν1−ν) ,

α12 =−
1

2
+
1

2
(n1+n2+n)− i(ν2+ν1+ν) ,

α21 =−
1

2
−
1

2
(n1+n2+n3)+ i(ν2+ν1+ν3) ,

α31 =−
1

2
+
1

2
(n2−n1+n3)+ i(ν1−ν2−ν3)

and α02 and α32 are obtained from α01 and α31 by inter-
changing 1↔ 2. The integral (118) is convergent both in
the infrared and ultraviolet. However, its calculation does

not look simple. Once this integral is known, the self-mass
in the conformal basis is given by a sum over three confor-
mal weights:

Σω,h(ω) =
8α4sN

2
c

π2

∫
dω1
2πi

∑
h1,h2,h3

Ih|h1,h2|h3Ωh̄,h1,h2

×Gh1(ω1)Gh2(ω−ω1)Γh̄1,h̄2|h3(ω, ω1) .

(119)

Here we made explicit the ω-dependence introducing it in
the arguments;Ω is the Korchemski vertex (107), Γh̄1,h̄2|h3
is defined by (104) and

∑
h is given by (74) without integra-

tion over r0.
In the same manner one can obtain expressions for

the vertex part Γ . We shall limit ourselves to the ‘three-
gamma’ approximation, (79). As before we expand the
vertex parts and Green functions in the conformal basis.
Suppressing again the ω-dependence, we have

Γ (1′|1′′, 2′′) =
∑

µ3,µ
′
3,µ
′′
3>0

Γµ3|µ′3,µ
′′
3
Eµ3(1

′)E∗µ′3
(1′′)E∗µ′′3

(2′′) ,

Γ (2′, 3′′|4′′) =
∑

µ2,µ
′
2,µ
′′
2>0

Γµ2µ′2|µ
′′
2
E∗µ′′2
(4′′)Eµ2(2

′)Eµ′2
(3′′) ,

Γ (5′′, 6′′|1) =
∑

µ1,µ
′
1,µ
′′
1>0

Γµ′1µ
′′
1 |µ1
E∗µ1(1)Eµ′1

(5′′)Eµ′′1
(6′′) ,

G(1′′|6′′) =
∑
µ4>0

Gµ4Eµ4(1
′′)E∗µ4(6

′′) ,

G(2′′|3′′) =
∑
µ5>0

Gµ5Eµ5(2
′′)E∗µ5(3

′′) ,

G(4′′|5′′) =
∑
µ6>0

Gµ6Eµ6(4
′′)E∗µ6(5

′′) .

Integrations over the double primed coordinates will give
six δ-functions in µ. So finally we are left with six summa-
tions over µi, i= 1, . . . , 6. The result can be presented in
the form (with ω-dependence suppressed)

Γ (1′, 2′|1) =
∑

µ1,µ2,µ3>0

Γµ2,µ3|µ1E
∗
µ1
(1)Eµ2(1

′)Eµ3(2
′) ,

(120)

where

Γµ2,µ3|µ1 = Γ
(0)
µ2,µ3|µ1

−
8α4sN

2
c

π2

∫
dω1
2πi
lµ3

×
∑

µ4,µ5,µ6>0

lµ6Γµ3|µ4,µ5Γµ2,µ5|µ6Γµ6,µ4|µ1Gµ4Gµ5Gµ6

(121)

is the desired vertex part in the conformal basis. Its depen-
dence on the c.m. coordinates Ri, i= 1, 2, 3, is determined

according to (104). The bare vertex Γ
(0)
µ2,µ3|µ1

is here given

by the formula analogous to (107).
In (121) summations over µi, i= 4, 5, 6, include integra-

tions over the c.m. coordinates Ri, i = 4, 5, 6. In the inte-
grand the R-dependence comes only from the vertex parts
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and in its turn is defined by (104). Thus the expression

Ih1h2h3|h4h5h6 =R
−α12
12 R

−α13
13 R

−α23
23

×

∫
dR4dR5dR6R

α34
34 R

α35
35 R

α45
45 R

α14
14

×Rα1616 R
α46
46 R

α25
25 R

α26
26 R

α56
56 (a.f.) , (122)

where all α are determined by formulas similar to (106)
(see Appendix B), is independent of the c.m. coordinates
Ri, i= 1, 2, 3 and depends only on the conformal weights.
So the part of the vertex depending on conformal weights
will satisfy the equation (with ω-dependence restored in
the arguments)

Γh2,h3|h1(ω, ω
′) =Ω(h1, h̄2, h̄3)−

8α4sN
2
c

π2

∫
dω1
2πi
lh3

×
∑

h4,h5,h6>0

lh6Ih1h2h3|h4h5h6Γh3|h4,h5(ω
′, ω1)

×Γh2,h5|h6 (ω−ω1, ω−ω
′)Γh6,h4|h1(ω, ω1)

×Gh4(ω1)Gh5 (ω
′−ω1)Gh6(ω−ω1) .

(123)

7 Conclusions

We have presented a formalism which allows one to study
the interaction of pomerons in the QCD with Nc →∞
using the standard methods of quantum field theory. In
particular, we constructed the Schwinger–Dyson equations
which sum the diagrams for the full pomeron Green func-
tion (the “enhanced” graphs in the terminology of the
old Regge–Gribov local supercritical pomeron model) and
carry information of the ‘physical’ pomeron as compared to
the ‘bare’ one.
Conformal symmetry of the theory leads to certain sim-

plifications. As a result we obtain a picture very similar
to the old Gribov local supercritical pomeron. The differ-
ence is reduced to an (infinite) number of pomerons with
varying n= 0,±2,±4, . . . and the more complicated form
of the ‘energy’ ωnν as a function of ν, which plays the
role of the pomeron momentum in the old theory, and
of the bare triple pomeron vertex, which now depends
both on n and ν. If, however, one selects the supercritical
pomeron with n= 0 and small values of ν, the formal sim-
ilarity becomes almost complete, since the energy becomes
a quadratic function of ν and the bare vertex then reduces
to a well-know constant [22]. Unfortunately, with this simi-
larity also the problems of the old theory, mentioned in the
Introduction, return together with the question of the in-
ternal consistency of the model. At present we do not know
the answer to this question and leave it for future studies.

Appendix A: Color factors

Let the color wave function of a pair of gluons be |ab〉,
where a, b= 1, . . . , N2c −1. Then the vacuum color state is

obviously

|0〉=
1√
N2c −1

∑
a

|aa〉= P |ab〉 , (A.1)

where

P =
1√
N2c −1

δab (A.2)

is the projector onto the vacuum color state.
The color structure of the vertex for the transition

2→ 4 reggeized gluons, with initial and final color variables
a1, b1→ a2, b2, a3, b3 is given by the expression

Vc = f
a1a2cf cb2dfda3efeb3b1 . (A.3)

We want the projection of this color vertex onto the three
vacuum color states formed by the gluons with colors a1b1,
a2b2 and a3b3. Applying the three corresponding projec-
tors P1, P2 and P3, we obtain

P2P3VcP1 =
1

(N2c −1)
3/2
fa1a2cf ca2dfda3efea3a1

=
N2c

(N2c −1)
3/2
δa1dδa1d

=
N2c√
N2c −1


Nc . (A.4)

Note, however, that the quarks quark loop which rep-
resents the external source has as its color factor δab =√
N2c −1P 
 NcP , so that each external source con-
tributes a factorNc.

Appendix B: Powers in (122)

We have

α12 =−
1

2
+
1

2
(n1+n3−n2)+ i(ν2−ν3−ν1) ,

α13 =−
1

2
+
1

2
(n1+n2−n3)+ i(ν3−ν2−ν1) ,

α23 =−
1

2
−
1

2
(n1+n2+n3)+ i(ν1+ν2+ν3) ,

α34 =−
1

2
+
1

2
(n4−n5−n3)+ i(ν5−ν4+ν3) ,

α35 =−
1

2
+
1

2
(n5−n4−n3)+ i(ν4−ν5+ν3) ,

α45 =−
1

2
+
1

2
(n4+n5+n3)− i(ν5+ν4+ν3) ,

α16 =−
1

2
+
1

2
(n1+n4−n6)+ i(ν6−ν4+ν1) ,

α14 =−
1

2
+
1

2
(n1+n6−n4)+ i(ν4−ν6+ν1) ,

α46 =−
1

2
−
1

2
(n1+n4+n6)+ i(ν6+ν4+ν1) ,

α26 =−
1

2
+
1

2
(n2+n5−n6)+ i(ν6−ν5−ν2) ,
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α25 =−
1

2
+
1

2
(n2+n6−n5)+ i(ν5−ν6−ν2) ,

α56 =−
1

2
−
1

2
(n2+n5+n6)+ i(ν6+ν5+ν2) .
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